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Abstract

Electromagnetic scattering problems involving inhomogeneous objects can be numerically solved by applying a Method
of Moments discretization to the volume integral equation. For electrically large problems, the iterative solution of the
resulting linear system is expensive, both computationally and in memory use. In this paper, a hybrid MLFMA–FFT
method is presented, which combines the fast Fourier transform (FFT) method and the High Frequency Multilevel Fast
Multipole Algorithm (MLFMA) in order to reduce the cost of the matrix–vector multiplications needed in the iterative
solver. The method represents the scatterers within a set of possibly disjoint identical cubic subdomains, which are meshed
using a uniform cubic grid. This specific mesh allows for the application of FFTs to calculate the near interactions in the
MLFMA and reduces the memory cost considerably, since the aggregation and disaggregation matrices of the MLFMA
can be reused. Additional improvements to the general MLFMA framework, such as an extention of the FFT interpola-
tion scheme of Sarvas et al. from the scalar to the vectorial case in combination with a more economical representation of
the radiation patterns on the lowest level in vector spherical harmonics, are proposed and the choice of the subdomain size
is discussed. The hybrid method performs better in terms of speed and memory use on large sparse configurations than
both the FFT method and the HF MLFMA separately and it has lower memory requirements on general large problems.
This is illustrated on a number of representative numerical test cases.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In several research domains, it is necessary to simulate the full-vectorial, three-dimensional scattering of elec-
tromagnetic waves from inhomogeneous dielectric objects. A few examples are the calculation of radar cross
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sections of composite structures, the homogenization of meta materials and the reconstruction of objects with
inhomogeneous permittivity from scattering data. A volume integral equation (VIE) formulation provides a
solid framework for such scattering simulations. Typically, a method of moments (MoM) discretization is used
to obtain an N-dimensional linear system which is then solved numerically. However, if the electrical size of the
scatterers increases, inverting directly this N � N -system becomes very slow due to the OðN 3Þ computational
complexity. Moreover, the memory needed to store the system’s N � N -matrix can easily exceed the available
computer memory. Solving the system iteratively using, for example, a conjugate gradient (CG) or stabilized
bi-conjugate gradient (BICGSTAB) solver reduces the computational complexity to OðN IN 2Þ, with N I the num-
ber of iterations, but the system’s matrix still has to be stored in this approach.

Two classes of methods that reduce the storage requirements and speed up the matrix–vector multiplica-
tions needed in every step of the iterative solver are the Fast Fourier transform (FFT) based techniques
and the Multilevel Fast Multipole algorithms (MLFMA’s). The first class [1–5] uses the FFT to exploit the
convolutional structure of the integral operator in the VIE and has a computational complexity (for one
matrix–vector multiplication) of OðN log NÞ and a memory use of OðNÞ. The methods in the second class, such
as the High Frequency (HF) MLFMA [6–9], the Low Frequency MLFMA [10] and the Inhomogeneous or
Stable Plane wave method [11,12], are based on efficient decompositions of the Green function. The major
advantages of the FFT methods are their speed and easy implementation, thanks to the fast, reliable and wide-
spread codes for calculating FFTs [13]. The MLFMA’s on the other hand allow a more flexible meshing of the
scattering geometry, since they can be applied to arbitrary meshes. For moderate to large volumetric problems
with densely distributed mesh elements, the FFT methods are usually faster, thanks to their small prefactor,
despite the lower computational complexity of MLFMA’s ðOðNÞÞ on such dense geometries.

In this paper, a hybrid MLFMA–FFT method is proposed, which is particularly suited for large scattering
configurations that show some sparsity. The method is a modification of the HF MLFMA that treats the
interactions between nearby mesh elements using FFTs and the interactions between well separated elements
as in a regular HF MLFMA. It can also be regarded as a hybridization of the subdomain FFT method, which
is proposed here as an FFT method for a collection of cubic subdomains. The subdomain meshing avoids the
extension of the FFT grid over empty space between scatterers, as is necessary in the classical FFT method. It
will be shown that the MLFMA–FFT method outperforms both the regular HF MLFMA and the FFT
method on large sparse geometries and that it can have lower memory requirements even on large dense
geometries.

The outline of this paper is as follows. In Section 2 the 3D scattering problem is formulated using a VIE and
discretized with a MoM scheme. Section 3 proposes a subdomain FFT method to speed up the matrix–vector
products needed for the iterative solution of the linear system. Section 4 starts by shortly revisiting the HF
MLFMA. For a more thorough treatment, the reader is referred to [9]. Next, some improvements to the gen-
eral MLFMA framework are presented. Specifically, the exploitation of symmetries in the subdomain mesh
allows for a reduction of the memory cost of the MLFMA and the application of an FFT interpolation
scheme for the vectorial MLFMA and the use of vector spherical harmonics to represent the radiation pat-
terns on the lowest level result in accurate and efficient aggregation and disaggregation stages. Section 5 pre-
sents the hybrid MLFMA–FFT and discusses its relation to the FFT method and the HF MLFMA. Finally,
several numerical examples are given in Section 6 to validate the method and to demonstrate its accuracy and
superior performance.

Throughout this paper, we will work in the frequency regime and the time dependency ejxt, with x the angu-
lar frequency, will be implicitly assumed.
2. Problem formulation

2.1. 3D volume integral equation

Consider a number of 3D inhomogeneous, possibly lossy, dielectric objects with arbitrary shape that are sit-
uated in a homogeneous background medium with complex permittivity �b (Fig. 1). All materials are non-mag-
netic and have permeability l0. The scatterers are characterized by the complex permittivity �ðrÞ ¼ �0ðrÞ � j�00ðrÞ,



Fig. 1. 3D scattering configuration.

7054 J. De Zaeytijd et al. / Journal of Computational Physics 227 (2008) 7052–7068
where r ¼ xx̂þ yŷþ zẑ denotes the position and û is a unit vector in the u-direction. Only for r in one of the
objects, the normalized contrast function
vðrÞ ¼ �ðrÞ � �b

�ðrÞ ; ð1Þ
with respect to the background medium, is non-zero. A bounded, but not necessarily connected, domain D is
defined that completely includes all the scatterers and on this domain the mixed potential formulation of the
electrical field volume integral equation is considered [14]:
E incðrÞ ¼ DðrÞ
�ðrÞ þ jxAscatðrÞ þ ruscatðrÞ; ð2Þ
where Einc is a known time-harmonic incident field, D represents the electric flux density D ¼ �E with E the
total electric field and where the scattered field Escat ¼ E � Einc is expressed as
EscatðrÞ ¼ �jxAscatðrÞ � ruscatðrÞ: ð3Þ

Ascat and uscat, respectively, represent the vector and scalar potentials corresponding to the contrast current
density J scat and the associated contrast charge density qscat, defined by
J scatðrÞ ¼ jx½�ðrÞ � �b�EðrÞ ¼ jxvðrÞDðrÞ; ð4Þ

qscatðrÞ ¼ �1

jx
r � J scatðrÞ: ð5Þ
The potentials are given by
AscatðrÞ ¼ l0

Z
D

Gbðr� r0ÞJ scatðr0Þdr0; ð6Þ

uscatðrÞ ¼ 1

�b

Z
D

Gbðr� r0Þqscatðr0Þdr0; ð7Þ
where
Gbðr� r0Þ ¼ e�jkbkr�r0k

4pkr� r0k ð8Þ
is the Green function of the background medium with propagation constant kb ¼ x
ffiffiffiffiffiffiffiffiffi
�bl0

p
. Considering (4)–

(7), it follows that the domain Eq. (2) is a Fredholm integral equation of the second kind for the unknown
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electric flux density D. Once (2) is solved for D in D, (3) can be used to calculate the scattered field everywhere
in space.

2.2. MoM discretization of the VIE

To solve (2) numerically, a Galerkin Method of Moments (MoM) is applied. The electric flux density is
expanded as
Fig

Fig. 3.
referen
DðrÞ �
XN

a¼1

daWaðrÞ 8r 2 D; ð9Þ
where Wa are vectorial basis functions and da are the unknown expansion coefficients. To define the functions
Wa, the domain D is built from a number of identical cubic subdomains Da; a ¼ 1; . . . ;N D, which belong to a
uniform cubic grid with grid parameter D, and every subdomain Da is divided in NC ¼ P 3 cubic cells with side
d (Fig. 2). To every cell facet F a in this grid, one basis function Wa ¼ Waûa is assigned, where ûa is the normal
to F aðûa ¼ x̂; ŷ or ẑ) and Wa is a 3D rooftop function that assumes the value 1 on F a and linearly tends to zero
along the directions �ûa over the two cells Sþa and S�a that share F a (Fig. 3). Such basis functions are also re-
ported in [3,15] and a similar formulation on tetrahedral meshes is proposed in [14]. The support of Wa is de-
noted Sa ¼ Sþa [ S�a . With this choice for the basis functions, the normal component of D is continuous across
all facets of the grid, as required by the boundary conditions. Furthermore, the contrast function v is approx-
imated by a piecewise constant function which assumes one value per cell. In cell Sþa (respectively, S�a ) this
value is denoted as vþa (respectively, v�a ). After substituting the expansion (9) in the domain Eq. (2), the same
vectorial rooftop functions are used to test the equation. To illustrate the MoM procedure, considerAscat

a ; /scat
a

. 2. The construction of the domain D from a number of identical cubic subdomains Da, meshed with a uniform cubic grid.

a b

Graphical representation of the rooftop function Wa associated to facet F a: (a) definition of the support cells Sþa and S�a and a local
ce system ðûa; v̂a; ŵaÞ, where ûa is the normal to F a, and (b) Wa as a function of ua and va for every wa: 0 6 wa 6 d.
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and Ea, respectively, the potentials due to and the total electric field corresponding to one term daWaðrÞ in (9).
Testing Ascat

a and r/scat
a with Wb yields
Z

Sb

WbðrÞ � Ascat
a ðrÞdr ¼ jxl0da vþa

Z
Sb

drWbðrÞ �
Z

Sþa

dr0Gbðr� r0ÞWaðr0Þ
"

þ v�a

Z
Sb

drWbðrÞ �
Z

S�a

dr0Gbðr� r0ÞWaðr0Þ
#

ð10Þ
and
 Z
Sb

WbðrÞ � r/scat
a ðrÞdr ¼ �

Z
Sb

/scat
a ðrÞr �WbðrÞdr; ð11Þ
where we have used Gauss’ theorem and the fact that Wb is zero outside Sb. The expression for /scat
a in (11) is

given by
/scat
a ðrÞ ¼ �

1

�b

da vþa

Z
Sþa

Gbðr� r0Þr0 �Waðr0Þdr0 þ v�a

Z
S�a

Gbðr� r0Þr0 �Waðr0Þdr0

"

þ v�a � vþa
� � Z

F a

Gbðr� r0Þdr0
�
; ð12Þ
where the last term represents the contribution of the surface charges that arise from the discontinuities in the
discretized contrast currents across the facets of the grid. The testing of Ea with Wb results in
Z

Sb

WbðrÞ � EaðrÞdr ¼ da

�b

ð1� vþa Þ
Z

Sb\Sþa

drWbðrÞ �WaðrÞ
"

þ ð1� v�a Þ
Z

Sb\S�a

drWbðrÞ �WaðrÞ
#
: ð13Þ
Note that we use complete rooftop functions Wb in (10), (11) and (13) to test the VIE. Strictly speaking this
generates a problem in (13) when the facets F b and F a coincide on the boundary of D. In this case Sþa ð¼ Sþb Þ or
S�a ð¼ S�b Þ lies outside D, where the expansion (9) is not defined. We therefore extend the validity of (9) over
one cell-width exterior to D by replacing the half rooftop Wa outside D with the constant unity function, i.e.
WaðrÞ ¼ ûa. This means we assume that keeping DðrÞ � ûa constant and equal to its value on F a is a good
approximation over a distance d outside D.

Collecting the tested incident field in the N-dimensional vector einc and introducing N-dimensional vectors
d�v with elements v�a da and d with elements da, we finally obtain the following set of N linear equations in N

unknowns da
einc ¼Wvd þ Zþdþv þ Z�d�v : ð14Þ

The elements of the N � N matrices Z� consist of double integrals with the Green function and at most two
linear functions in the integrand, as appears from (10)–(12). These integrals are computed numerically using
Gaussian quadrature and the 1=r-singularity of the Green function is handled by singularity subtraction [16].
The sparse matrix W v is derived from (13). Note that the elements of the dense matrices Z� do not depend on
the contrast. This way, they need to be calculated only once for a series of scattering simulations with varying
contrast, for example in an inverse scattering problem, where the voxel permittivities are iteratively updated
until the simulated forward scattering matches the measured data [17].

3. The subdomain FFT method

Since N is usually quite large, we solve (14) iteratively with a stabilized bi-conjugate gradient (BICGSTAB)
routine [18]. To speed up the evaluations of the matrix–vector multiplications in (14), we focus on the most
time consuming part, i.e. the multiplications with Z�. By denoting with va the part of an N-dimensional vector
v that corresponds to basis or testing functions in the subdomain Da, we can write
ðZþdþv þ Z�d�v Þb ¼
X

a

Zþbadþv;a þ
X

a

Z�bad�v;a 8b 2 f1; . . . ;N Dg; ð15Þ



Fig. 4. Illustration of the computational complexity of the subdomain FFT method.
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where the matrices Z�ba describe the interaction between two subdomains Da and Db. The matrix–vector prod-
ucts Zþbadþv;a and Z�bad�v;a can be cast as 3D discrete convolutions, since the convolutional symmetry in (6) and
(7) is conserved thanks to the chosen discretization. Therefore, the index a and the notation F a are replaced
by the quintet ðp; q; r; a; uÞ and the notation F a;u

p;q;r. The indices p; q and r determine the position of S�a , or
equivalently Sa;�

p;q;r, in the x; y and z direction, respectively, within the subdomain Da and the superscript
u = 1, 2 or 3 discriminates between the three faces F a0 for which S�a0 ¼ S�a . With this labelling we write
½Zþba�ba ¼ Zþbaðp � p0; q� q0; r � r0; u; u0Þ and
½Zþbadþv;a�b ¼
X

u0

X
p0

X
q0

X
r0

Zþbaðp � p0; q� q0; r � r0; u; u0Þva;u0;þ
p0 ;q0 ;r0d

a;u0

p0;q0 ;r0 : ð16Þ
After performing a 3D FFT of size ð2P þ 1Þ � ð2P þ 1Þ � ð2P þ 1Þ, the discrete convolution in this expression is
transformed into a simple diagonal multiplication, as is well known. We denote this method, where the total
mesh consists of cubic subdomains Da, as the subdomain FFT method. The computational complexity of an
evaluation of (14) in the subdomain FFT method (Fig. 4) is dominated by the calculation of the FFTs of d�v;a
for every subdomain and the diagonal multiplications for every combination of subdomains. Thus it is
Oðc1N DNC log NC þ c2ðNDÞ2NCÞ and the memory use is bounded above by Oðd1ðNDÞ2N C þ d2NDNCÞ (for stor-
ing the spectra of Zþba, which are calculated in the setup time of the algorithm, and of d�v;a), where c1; c2; d1 and
d2 are constant prefactors. In practice the memory use is smaller, because some interactions Zþba are identical due
to translation symmetry.

4. The HF MLFMA

4.1. Basic equations

The Multilevel Fast Multipole Algorithm (MLFMA) is a multilevel extension of the Fast Multipole
Method (FMM). In this paper, a vectorial FMM is employed. This means that the mixed potential formula-
tion (3) is replaced by the electric field integral formulation
EscatðrÞ ¼ �jxl0

Z
D

I þ 1

k2
b

rr
 !

Gbðr� r0Þ � J scatðr0Þdr0 ð17Þ
and the diagonal addition theorem for the Green dyadic is used (see [9], chapter 3, and [19]).
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The FMM requires a division of the basis functions in a number of non-overlapping FMM-groups. In our
implementation the FMM-groups conveniently coincide with the cubic subdomains Da, which are introduced
in Section 2.2. Let Escat

a be the scattered electric field, caused by the contrast currents in subdomain Da. The HF
FMM computes Escat

a , tested with a basis function Wb belonging to subdomain Db as
Z
D

WbðrÞ � Escat
a ðrÞdr � � jk3

b

ð4pÞ2�b

Z p

0

dh
Z 2p

0

d/Vb;bðh;/Þ � T baðh;/Þ sin hUaðh;/Þ: ð18Þ
Note that (18) represents one element of �ðZþbadþv;a þ Z�bad�v;aÞ in (15). The diagonal translation operator T ba is
calculated as
T baðh;/Þ ¼
XL

l¼0

ð�jÞlð2lþ 1Þhð2Þl ðkbrbaÞP lðk̂ðh;/Þ � r̂baÞ; ð19Þ
where hð2Þl is the spherical Hankel function of the second kind and order l; P l is the Legendre function of order
l; rba ¼ krbak ¼ krb

c � ra
ck is the distance between the centers of the subdomains, r̂ba ¼ rba=rba and

k̂ðh;/Þ ¼ x̂ sin h cos /þ ŷ sin h sin /þ ẑ cos h is a vector on the unit sphere. The radiation patterns Ua and
Vb;b are given by
Uaðh;/Þ ¼
X
a2Iþa

vþa da

Z
Sþa

ejkb�ðr0�ra
c ÞðI � k̂k̂Þ �Waðr0Þdr0 þ

X
a2I�a

v�a da

Z
S�a

ejkb �ðr0�ra
c ÞðI � k̂k̂Þ �Waðr0Þdr0 ð20Þ

Vb;bðh;/Þ ¼
Z
Sb

e�jkb�ðr�rb
c ÞðI � k̂k̂Þ �WbðrÞdr; ð21Þ
where kb ¼ kbk̂. The set I�a in (20) contains indices a of basis functions Wa for which S�a lies in Da. Note that
these patterns only have transverse components Uu

a ¼ Ua � û and V u
b;b ¼ Vb;b � û with u ¼ / or u ¼ h. Eq. (18)

can be shown to be valid up to arbitrary precision as long as rba is sufficiently large, i.e. Da and Db have to be
well separated [9]. In general, this is expressed as rab > bR, where b is the separation parameter and R is the
radius of the subdomains.

4.2. Numerical implementation

4.2.1. Integration and interpolation

To evaluate the integrals in (18) numerically and to perform the interpolations needed to extend the FMM
to the MLFMA, we follow an approach, similar to that of Sarvas [20]. In this approach, the radiation patterns
are presented in a Fourier basis rather than with the usual spherical harmonics and interpolations are done
with FFTs. The difference is that the FMM in [20] is scalar, while ours is vectorial. We use the transverse com-
ponents of the radiation patterns, which are not bandlimited in terms of spherical harmonics, in contrast to the
cartesian components. However, the functions Uu

a and V u
b;b do have exponentially decaying Fourier spectra

when their definition domain is extended from ½0; p� � ½0; 2p� to ½0; 2p� � ½0; 2p� using the formula
F ðh;/Þ ¼ �F ð2p� h;/þ pÞ ð22Þ

for F ¼ U u

a or F ¼ V u
b;b, as can easily be verified. The integral in (18) then is replaced by
Z

D

WbðrÞ � Escat
a ðrÞdr � � 1

2

jk3
b

ð4pÞ2�b

Z 2p

0

dh
Z 2p

0

d/Vb;bðh;/Þ � T baðh;/Þj sin hjUaðh;/Þ; ð23Þ
where the definition domain of the spherical function T ba is extended with
T baðh;/Þ ¼ T bað2p� h;/þ pÞ: ð24Þ

Formula (22) thus allows the extension the FFT approach of [20] to the vectorial case. In the Fourier rep-

resentation, N 0ð2M0 þ 1Þ samples of the radiation patterns, uniformly spaced in h and / within the domain
½0; p� � ½0; 2p�, are needed to perform the integration in (23). The numbers M0 and N 0 depend on the subdo-
main radius R and the desired accuracy. We chose M0 ¼ L0;N 0 ¼ L0 þ 1 where L0 is determined numerically
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together with L in (19) on a worst case scenario in such a way that the desired accuracy is achieved with the
minimum number of samples. L0 turns out to be much smaller than L, usually somewhat larger than L

2
. Further

differences with the implementation of [20] involve the recursive calculation of the truncated Fourier spectrum
of T baðh;/Þ j sin h j using a recursion formula for the Legendre function and the use of a 2D extension of The-
orem 4.1 in [20] to anterpolate the product T baðh;/Þ j sin h j Uaðh;/Þ.

4.2.2. More efficient aggregation and disaggregation

The evaluation of (20) in N 0ð2M0 þ 1Þ uniformly spaced sample points, referred to as aggregation towards
the lowest level, can be cast into a matrix operation:
Uu
a ¼ Aþ;udþv;a þA�;ud�v;a; u ¼ h or /: ð25Þ
Uu
a is a N 0ð2M0 þ 1Þ-dimensional vector containing the samples of Uu

a and Aþ;u and A�;u are the
aggregation matrices. After interpolation, translation and anterpolation, the incoming pattern
Rbðh;/Þ ¼

P
aT baðh;/Þ Uaðh;/Þ j sin h j of every group Db is multiplied in (23) with Vb;b and integrated for

every Wb in Db. Since the integration is performed numerically by a summation over samples, this can also be
written as a matrix operation:
escat
b;FMM ¼ DhRh

b þD/R/
b ; ð26Þ
where escat
b;FMM contains the weighted scattered field in subdomain Db, due to all well separated subdomains Da

and Ru
b contains the samples of Rbðh;/Þ � û. The matrices Dh and D/ are the disaggregation matrices and this

step in the algorithm is denoted as disaggregation from the lowest level.
Again the contributions of Sþa and S�a are separated in (25) in order to make the aggregation matrices inde-

pendent of the contrast. Because of this and because of the identical geometry of all subdomains, the aggre-
gation and disaggregation matrices are the same for every subdomain and have to be stored only once. This
saves a lot of memory compared to a HF MLFMA applied to arbitrary meshes, where these matrices have to
be stored per FMM-group or subdomain.

Although using uniform samples in h and / allows for an elegant FFT interpolation, combining global
exact interpolation with efficiency, it is suboptimal with respect to the aggregation toward and disaggregation
from the lowest level. The cost of these stages can be reduced by choosing the samples more optimally [21] or
by temporarily switching to another, more economic representation of the radiation patterns. The latter
approach has been employed in [22], where the cartesian components of the radiation patterns are represented
in a spherical harmonics basis on the lowest level. After aggregation to this basis, the uniform samples are still
needed to proceed with the diagonal translations and the interpolations towards higher levels, where the pat-
terns are stored in the usual k-space representation. In this paper, a similar strategy is adopted, but we use
vector spherical harmonics to represent only the transverse components of the radiation patterns. For
example:
Uaðh;/Þ ¼
XL0

l¼0

Xl

m¼�l

ðcaÞlmX lmðh;/Þ þ
XL0

l¼0

Xl

m¼�l

ðjaÞlmUlmðh;/Þ: ð27Þ
Here, X lm and Ulm ¼ k̂� X lm are vector spherical harmonics as defined in [23]. The multipole coefficients
ðcaÞlm and ðjaÞlm are determined as
ðcaÞlm ¼ 4pjl
X
a2Iþa

vþa da

Z
Sþa

drWaðrÞ �mð1Þ	lm ðr� ra
cÞ þ 4pjl

X
a2I�a

v�a da

Z
S�a

drWaðrÞ �mð1Þ	lm ðr� ra
cÞ ð28Þ

ðjaÞlm ¼ 4pjl�1
X
a2Iþa

vþa da

Z
Sþa

drWaðrÞ � nð1Þ	lm ðr� ra
cÞ þ 4pjl�1

X
a2I�a

v�a da

Z
S�a

drWaðrÞ � nð1Þ	lm ðr� ra
cÞ ð29Þ
where m
ð1Þ
lm ðrÞ ¼ jnðk0rÞX lmðr̂Þ and n

ð1Þ
lm ðrÞ ¼ 1

k0
r�m

ð1Þ
lm ðrÞ, with jn the spherical Bessel function, are the stand-

ing wave vector solutions with zero divergence of the Helmholtz equation as defined in [23]. m
ð1Þ	
lm and n

ð1Þ	
lm

denote the complex conjugate of m
ð1Þ
lm and n

ð1Þ
lm respectively. The advantage of this approach is that we only need
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to calculate 2� ðL0 þ 1Þ2 multipole coefficients to represent Ua, which is half the amount of uniform samples
that are needed, 2� ð2L0 þ 1ÞðL0 þ 1Þ. The matrix version of (28) and (29) which now replaces (25) is
ca ¼Mþdþv;a þM�d�v;a; ð30Þ

ja ¼ N
þ

dþv;a þN
�

d�v;a; ð31Þ
where ca and ja are vectors containing the multipole coefficients of Ua. M� and N
�

are the new aggregation
matrices, which are still independent of the domain index a. Since these matrices are only half as large as the
original aggregation matrices in (25), the aggregation to multipole coefficients will be twice as fast. The overall
gain factor, however, will be smaller than 2, because we still have to evaluate the multipole expressions for the
radiation patterns in the N 0ð2M0 þ 1Þ uniform sample points with (27). However, this can be done efficiently.
First of all note that Ulm � ĥ ¼ �X lm � /̂ and Ulm � /̂ ¼ X lm � ĥ. Then let us rewrite (27) using a block matrix
notation:
Uh
a

U/
a

" #
¼

X h �X/

X/ X h

� �
ca

ja

� �
: ð32Þ
It appears that four matrix–vector multiplications (with matrices of much smaller dimension than the aggre-
gation matrices) have to be carried out. This can be avoided, however, since (32) can be diagonalized:
Uh
a

U/
a

" #
¼ 1

2

I I

jI �jI

� �
X h � jX/ 0

0 X h þ jX/

� �
ca � jja

ca þ jja

� �
; ð33Þ
where I represents the unit matrix of dimension N 0ð2M0 þ 1Þ. This way, only two matrix–vector products and
some simple recombinations remain. Note that in [22] three matrix–vector products are required to calculate
the three cartesian components of the radiation patterns. Furthermore the summations over m in (27) can be
carried out efficiently by using FFTs. It can be shown that X lm � ĥ and X lm � /̂ depend on / only through a
factor ejm/, such that the typical summation is of the form
XL0

l¼0

Xl

m¼�l

F lmðhÞejm/qclm ¼
XL0

m¼�L0

XL0

l¼jmj
F lmðhÞejm/qclm ð34Þ

¼
XL0

m¼�L0

e
jm 2p

2L0þ1q
XL0

l¼jmj
F lmðhÞclm

 !
; ð35Þ
where we have assumed the form /q ¼ q 2p
2L0þ1

¼ q 2p
2M0þ1

for the samples in the /-direction. The outer summa-
tion in (35) is a discrete Fourier transform and hence can be calculated by an FFT.

Vb;b is also expanded in multipoles and by substituting this expansion in (18) and by interchanging the inte-
gration and the summation in the multipole expansion, a disaggregation procedure with multipoles is readily
obtained similar to the aggregation procedure outlined above. The gain in speed obtained by the aggregation
and disaggregation via multipoles will be discussed in Section 6.2.

A last improvement to the aggregation towards and disaggregation from the lowest level is a purely tech-
nical one. The matrix operations (30) and (31) have to be carried out for every subdomain. Since the aggre-
gation and disaggregation matrices are the same for all the groups, the vectors dþv;a for all a, for example, can
be stored columnwise in a large matrix with N D columns. This matrix can be multiplied as a whole with the
appropriate aggregation matrix using Level 3 Basic Linear Algebra Subprograms (BLAS) [24,25], which
reduces the CPU time considerably. This will also be illustrated in Section 6.2.
5. The hybrid MLFMA–FFT method

The hybrid MLFMA–FFT method consists of applying the HF MLFMA of Section 4 to the cubic mesh of
Section 2.2 and treating the interactions (15) between subdomains that are not well separated – the near inter-
actions – with the use of FFTs (16). The resulting method is an improvement with respect to both the HF
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MLFMA and the subdomain FFT method. With regard to the MLFMA, treating the near interactions with
FFTs is rewarding, because the OððNCÞ2Þ near interactions of the HF MLFMA are replaced by more efficient
OðNCÞ diagonal multiplications (Fig. 5). With regard to the subdomain FFT method, the hybrid MLFMA–
FFT method replaces the diagonal multiplication in the Fourier domain with the diagonal translation of the
FMM for well separated subdomains. Because the dimension of the former is proportional to NC and thus to
the volume of the subdomains, while the dimension of the latter is generally smaller (only proportional to the
surface area of the subdomains when these are large enough), this can reduce the computation time and mem-
ory use, even in a two-level FMM. Furthermore, in the multilevel scheme, the computational complexity of the
MLFMA–FFT method is OðNÞ to OðN log2NÞ, while the subdomain FFT method scales as ðNDÞ2N C ¼ N 2=NC

for a fixed size of the subdomains.
For a more in depth study of the method, the subdomain size is the most important parameter. For a fixed

separation parameter b (which determines the reachable accuracy) it determines the height of the MLFMA
tree (we add levels until there are no more far interactions on the level to add) and the efficiency of the mul-
tilevel scheme. To investigate the influence of the subdomain size, consider first a very large dense scattering
configuration. In such a situation, the number of near interactions for a given subdomain (i.e. the number of
subdomains with a center that lies within a radius bR from the center of the considered subdomain) is inde-
pendent of the subdomain size. To see what happens when the subdomain size is increased, consider a dou-
bling of this size:


 The number of cells N C per subdomain is multiplied by 8.

 The number of subdomains is divided by 8.

 The cost of calculating the FFTs for every subdomain increases slightly from NC lnðN CÞ to NC lnð8N CÞ.

 The cost of the diagonal multiplications in the Fourier domain for the near interactions is unaltered, since

the increase in cells per subdomain and the decrease in number of subdomains balance each other.

 The cost of the translations and interpolations/anterpolations is seriously reduced, because we lose a level

and nothing changes for the remaining levels.

 The cost of the aggregation toward and disaggregation from the lowest level is increased, because L0 is

increased. For subdomain sizes of about one wavelength or less, the increase is practically negligible, but
for larger subdomains, L0 increases linearly with the subdomain size.

One can conclude that unless the subdomains become very large ðkbR� 1Þ, an increase in subdomain size
reduces the cost and memory usage. For sparse configurations, the behaviour is less predictable, but apart
from some exotic configurations the same conclusion stands. This is an important difference with the original
MLFMA, where the cost of the near interactions is multiplied by 8 when the subdomain size is doubled.
Therefore, in the MLFMA there generally is an optimal subdomain size, smaller than the background wave-
Fig. 5. Illustration of the computational complexity of the MLFMA–FFT method.



Fig. 6. Two ways of handling a sparse cubic mesh (a): extension to the bounding box DC (b), and division in identical cubic subdomains
(c).

7062 J. De Zaeytijd et al. / Journal of Computational Physics 227 (2008) 7052–7068
length, which balances the load between near and far interactions optimally, but the use of FFTs shifts this
optimum in the MLFMA–FFT method to much larger subdomains.

Our main goal is to examine for which type of configurations the MLFMA–FFT method outperforms the
FFT method in terms of CPU time or memory consumption. On dense problems it is well known that the
MLFMA, and thus also the MLFMA–FFT method, is OðNÞ. However, it appears from numerical tests that
despite this lower computational complexity, the MLFMA–FFT method is slower than the FFT method even
for fairly large problems, due to the small prefactor of the FFT method. It will be shown in Section 6, though,
that it uses substantially less memory. Another situation is encountered when considering sparse scattering
configurations, such as the one in Fig. 6(a). When the FFT method is used to calculate the scattering from
this geometry, the cubic grid has to be extended to the bounding box DC of the domain D as in Fig. 6(b). This
implies that the CPU time and the memory needed for the calculation of (14) are the same as for a dense con-
figuration in DC. In this case the MLFMA–FFT or even the subdomain FFT method can yield a faster
matrix–vector multiplication because they discretize the geometry more economically (Fig. 6(c)). If we do
not want the grid to extend over regions of empty space, the maximal subdomain size is dictated by the spar-
sity of the configuration. Combining this with the main conclusion of the previous paragraph, we state the
following rule of thumb: if the maximal subdomain size, determined by the sparsity of the geometry, is not
much larger then a wavelength, use this maximal subdomain size and the MLFMA–FFT method. For very
large maximal subdomain sizes, the aggregation and disaggregation steps become unwieldy and it might be
appropriate to use the subdomain FFT on the maximal subdomains or the MLFMA–FFT method with smal-
ler subdomains, depending on the specific geometry. In general, however, the MLFMA–FFT method will con-
sume less memory on any large problem, as will be demonstrated in the next section.

6. Validation and performance analysis

In this section, the proposed MLFMA–FFT method is validated and its performance is investigated and
compared to that of the FFT-method and the HF MLFMA on a number of test cases. All computations
are carried out in double precision arithmetics on a 64 bit computer with 2 GHz Dual Core AMD Opteron
processor and 8 GB RAM. All FFTs are computed using FFTW, the Fastest Fourier Transform in the West,
a collection of fast C routines for computing the discrete Fourier transform [13]. No parallelizing or multi-
threading of any kind are used.

6.1. Validation

The scattering from a homogeneous sphere is considered to first validate the subdomain FFT method. The
sphere has a radius R ¼ kb of one background wavelength and a permittivity � ¼ ð2� 2jÞ�b and is illuminated
with an x-polarized plane wave traveling in the +z-direction:
E incðrÞ ¼ e�jkbzx̂: ð36Þ

The sphere is contained in a cubic domain D with side 2kb. The grid on this domain has a cell size d ¼ 0:05kb,
which results in 196800 unknowns. Such a fine grid is chosen to reduce the staircasing error. We solve the VIE
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in two ways: firstly we consider D as one cubic subdomain, which means that we employ a classical FFT meth-
od, and secondly we divide D in 64 subdomains and apply the subdomain FFT method. Both methods needed
39 BICGSTAB iterations to converge to an accuracy of 10�6. Fig. 7 compares the scattered fields with the
analytical solution provided by the MIE series [26]. The agreement is very good.

We now compare the scattered fields computed by the MLFMA–FFT method and the subdomain FFT-
method for the sparse scattering configuration of Fig. 8. A homogeneous sphere with a radius R ¼ 2kb and
a

b

Fig. 7. Scattering from a homogeneous sphere with radius R ¼ kb and permittivity � ¼ ð2� 2jÞ�b: comparison between MIE series and
results from the FFT and subdomain FFT methods. Figure (a) shows the x-component of the scattered field on a semicircle S ¼ fr : r ¼
Rm sin hx̂þ Rm cos hẑg, with Rm ¼ 4kb and h 2 ½0; p½. Figure (b) shows the error defined as exðrÞ ¼ kes

xðrÞ � es
x;MIEðrÞk=maxr2Skes

x;MIEðrÞk for
both the FFT and subdomain FFT methods.



Fig. 8. A homogeneous sphere with R ¼ 2kb and � ¼ ð2� 2jÞ�b, surrounded by 50 particles with side kb and � ¼ 1:5�b, randomly
distributed over a cubic domain DC with side 10kb. Figure (a) shows the actual scatterers and figure (b) represents the mesh used by the
MLFMA–FFT and subdomain FFT methods. The cell size is d ¼ 0:1kb.
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a permittivity � ¼ ð2� 2jÞ�b is surrounded by 50 cubes with side kb and permittivity � ¼ 1:5�b, that are ran-
domly distributed in a cubic domain D with side 10kb. The cell size is 0:1kb. This problem yields 344100
unknowns and is solved by both methods in 67 iterations to an accuracy of 10�6. The results are shown in
Fig. 9. The parameters for the MLFMA are chosen such that the relative error on the FMM-formula (18)
is less than 10�5 and Fig. 9(b) shows that the relative difference between both solutions stays below this value.

6.2. Performance analysis

We first demonstrate the acceleration of the aggregation towards and the disaggregation from the lowest
level, introduced by the techniques of Section 4.2.2, in Table 1. Three sizes of the subdomains (0:5kb, 0:8kb

and kb) are considered. The values of L0 and Na determine the size of the aggregation and disaggregation
matrices. N a is the number of basis functions in a subdomain if it is filled with a uniform cubical grid with
d ¼ 0:1kb. L0 is determined together with L (not shown in Table 1) such that the relative error on the
FMM-formula (18) does not exceed 10�5 when the separation parameter b is set to 4. It can be seen that
by performing the aggregation towards and disaggregation from the lowest level via multipoles (M) instead
of with uniform samples (US), the CPU time for these stages can be reduced by 40–45%. Moreover, with
the use of Level 3 BLAS routines (MB) the total reduction factor ranges from 3 for a subdomain size of
0:5kb to 5 for a subdomain size of kb. The number of subdomains ND, once it is large enough, does not seem
to have a significant influence on these gain factors.

Next, the performances in terms of CPU time and storage requirements of all the methods described in this
paper are investigated and compared. Table 2 shows the CPU time for one evaluation of (14) and the memory
needed to solve the VIE for a number of test geometries. These geometries are all contained in a cubic bound-
ing box DC with side 10kb and are meshed with a uniform cubic grid with cell size d ¼ 0:1kb. For the FFT
method, the complete bounding box DC has to be discretized, irrespective of the actual permittivity profile
and geometry inside DC. This yields the test grid ‘‘full”. The subdomain FFT method and the MLFMA–
FFT method can be used on sparse subdomain grids. The test grid ‘‘clutNP” thus refers to grids like the
one of Fig. 8(b), where N P is the number of particles that surround a central cube of side 4kb. All particles
are cubes with side kb and coincide with one subdomain each in all test grids, except for ‘‘clut45/2”. The test
grid ‘‘clut45/2” is identical to ‘‘clut45”, but the size of its subdomains is twice as small ð0:5kbÞ and hence their
number is eight times larger than with ‘‘clut45”. Finally the test grid ‘‘corner” indicates a mesh like the one in
Fig. 6(a) with a wall thickness of kb and outer dimensions of 10kb. The subdomains for the test grids ‘‘full” and
‘‘corner”, when using MLFMA–FFT or subdomain FFT, also have a size kb.

We first note that the subdomain FFT method is less efficient than the FFT method in case of dense geom-
etries like the test grid ‘‘full”, due to a higher complexity. In fact, on the test grid ‘‘full” and on all other test



a

b

Fig. 9. Scattering from the scatterers depicted in Fig. 8. Figure (a) shows the x-component of the scattered field on a semicircle S ¼
fr : r ¼ Rm sin hx̂þ Rm cos hẑg, with Rm ¼ 10kb and h 2 ½0;p½. Figure (b) shows the error defined as exðrÞ ¼ kes

x;2ðrÞ � es
x;1ðrÞk=kes

x;1ðrÞk
between the subdomain FFT method ðes

x;1Þ and the hybrid MLFMA–FFT method ðes
x;2Þ.
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grids except for ‘‘clut45”, the subdomain FFT method could not even be used, because it required more mem-
ory than the available 8 GB. On the sparse test grid ‘‘clut45”, the subdomain FFT method yields a faster
matrix–vector product than the FFT method, but even here the memory requirements are close to the limit.

When we compare the MLFMA–FFT method with the subdomain FFT method on the test grid ‘‘clut45”,
the gain in CPU time and especially in memory use of the hybrid method is obvious. In comparison to the
FFT method (test grid ‘‘full”), the MLFMA–FFT method clearly performs better on all sparse test grids.
The matrix–vector multiplication is faster and the reduction of the storage needs is even more explicit. Even
on the dense problem of test grid ‘‘full” the MLFMA–FFT method requires less memory than the FFT-



Table 1
Comparison of CPU times (in seconds) for the aggregation and disaggregation towards and from the lowest level using uniform samples
(US), multipoles (M) and multipoles and Level 3 BLAS (MB)

Subdomain size (in kb) L0 Na ND US M MB

0.5 11 450 1000 5.00 3.16 1.66
0.5 11 450 500 2.62 1.61 0.85

0.8 15 1728 1000 45.88 24.64 9.32
0.8 15 1728 500 17.74 10.03 4.70

1.0 17 3300 1000 112.34 61.25 21.29
1.0 17 3300 500 56.26 30.77 10.79

Results are given for different subdomain sizes and for two values of ND, the number of subdomains. The values of L0 yield an FMM-
accuracy of 10�5.

Table 2
Comparison between the different methods in terms of memory requirements and CPU-time per evaluation of (14)

Problem Method fV N CPU-time Memory

Full FFT 1.0 3,030,000 38.92 s +7 GB
MLFMA–FFT 1.0 3,030,000 310.88 s 2951 MB

clut45 MLFMA–FFT 0.07 343,900 12.91 s 940 MB
subdomain FFT 0.07 343,900 29.87 s >7.3 GB

clut45/2 MLFMA–FFT 0.07 343,900 32.04 s 720 MB
MLFMA 0.07 343,900 142.89 s 1570 MB

clut87 MLFMA–FFT 0.11 487,300 20.83 s 1059 MB
clut127 MLFMA–FFT 0.15 610,700 25.12 s 1156 MB
clut173 MLFMA–FFT 0.19 758,400 34.38 s 1267 MB
corner MLFMA–FFT 0.18 591,900 19.33 s 943 MB

fV is the volume fraction of the scatterers in the surrounding cube DC with side 10kb. Whenever the MLFMA or the subdomain FFT
method is not mentioned for one of the test cases, this means that the available memory was not sufficient for that method.
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method, but it is defeated in terms of CPU time. Note that most of the +7 GB used by the FFT-method is
needed to store the FFT-vectors and is therefore not affected by how sparse the actual permittivity profile
on the grid is. Because of the OðNÞ storage complexity of both the MLFMA–FFT method and the FFT
method on dense problems like the test grid ‘‘full”, the hybrid method will always require less memory than
the FFT method on electrically large problems.

Finally the MLFMA–FFT method and the MLFMA are compared on the same cubic mesh and using the
same parameters. The MLFMA exploits the symmetry to reuse the aggregation and disaggregation matrices.
When not doing so, the aggregation and disaggregation matrices of only 78 subdomains with side kb could be
stored in the available 8 GB of RAM. However, even the symmetry adjusted MLFMA could only be used on
the sparsest test grid ‘‘clut45/2” with the smallest subdomains, since the other test grids required too much
memory to store the near interaction matrices. For this test grid, the hybrid MLFMA–FFT is almost 5 times
as fast as the MLFMA and memory requirements are less than half. It follows that the hybrid MLFMA–FFT
method is applicable to a much wider range of volumetric problems than the MLFMA and that it also per-
forms better. The test case ‘‘clut45/2” illustrates that dividing the mesh in smaller subdomains beyond what is
necessary to account for the sparsity of the scatterers is not beneficial in terms of CPU time of the MLFMA–
FFT method. On this example it does reduce the memory use, but this behaviour strongly depends on the
geometry and is not a fundamental property.

7. Conclusions

In this paper, a new hybrid MLFMA–FFT method was presented. The method combines the advantages of
the HF MLFMA and the FFT method on volumetric scattering problems which can be meshed using a
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uniform grid. A flexible subdomain meshing of sparse scatterers was introduced and the symmetry in this mesh
was exploited to make some of the more time and memory consuming stages in the HF MLFMA more effi-
cient. Also, a novel approach employing vector spherical harmonics to represent the radiation patterns on the
lowest level in combination with an FFT interpolation scheme for the vectorial MLFMA was introduced. It
was finally shown that the resulting hybrid method is a valuable supplement to the existing fast methods,
because it is more efficient on sparse scattering configurations and it can easily be used as a regular FFT solver
on dense problems. Furthermore, when memory is an issue, the method’s low storage requirements provide a
means to tackle very large problems which would otherwise be out of reach.
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